ОГЛАВЛЕНИЕ

Предисловие11	
ЧАСТЬ ПЕРВАЯ. Марганцевые породы и руды. Общие сведения о разделении изотопов углерода и кислорода в седименто- и литогене	зе14
Глава 1. Марганцевые породы и руды	14
Глава 2. Общие сведения о разделении изотопов углерода и кислорода при образовании карбонатов в седименто-	
и литогенезе	18
2.1. Разделение изотопов углерода и кислорода	
в процессе образования осадочных карбонатных пород	21
2.2. Особенности формирования изотопного состава аутигенных	
карбонатов в зоне диагенеза	24
2.3. Факторы, контролирующие формирование изотопного состава	
углерода и кислорода в постраннедиагенетических	
аутигенных карбонатах	32
ЧАСТЬ ВТОРАЯ . Карбонаты марганца в современных осадках	42
Глава 3. Карбонаты марганца в океанических осадках	44
3.1. Изотопный состав и происхождение кальциевого	•••••••••••••••••••••••••••••••••••••••
родохрозита в осадках Гватемальской котловины	
(Панамский бассейн, Тихий океан)	44
3.2. Карбонаты марганца в осадках Центрально-Американского	
желоба (поднятие Эль-Гардо, Тихий океан)	55
Глава 4. Карбонаты марганца в морских осадках	59
4.1. Карбонаты марганца в осадках Балтийского моря	
4.2. Железомарганцевые конкреции Белого моря (Онежский залив)	67
Глава 5. Карбонаты марганца в озерных осадках	
(на примере озер Карелии)	
5.1. Железомарганцевые стяжения оз. Пуннус-Ярви	
5.2. Железомарганцевые стяжения оз. Кончозеро	96

6 Оглавление

Глава 6. Изотопно-геохимические закономерности формирования карбонатов марганца в современных осадках102	
роолигод канргилади д оодрологлада оондалад ини	
<i>ЧАСТЬ ТРЕТЬЯ</i> . Генетические модели марганцевого рудогенеза	107
Глава 7. Генетические типы и классификация месторождений марган	ца107
Глава 8. Модельные примеры формирования месторождений маргани	ιa113
8.1. Осадочно-диагенетические месторождения	
8.1.1. Никопольский марганцеворудный бассейн	
8.1.2. Мангышлакское месторождение	143
8.1.3. Марганцевые месторождения Грузии (на примере	
Чиатурского и Квирильского месторождений)	
8.1.4. Безмошицкое рудопроявление (Предтиманье)	213
8.1.5. Осадочно-диагенетические месторождения марганца	
разных районов мира	223
8.2. Месторождения гидротермально-осадочного	
и гидротермального генезиса	
8.2.1. Гидротермально-осадочные месторождения Южного Урала	
8.2.2. Парнокское месторождение железо-марганцевых руд	286
8.2.3. Месторождения гидротермально-осадочного генезиса	201
других районов	
8.2.4. Гидротермальные месторождения марганца	
8.3. Эпигенетические (катагенетические) месторождения	310
8.3.1. Месторождение-супергигант – марганцеворудное поле Калахари (Северный Кейп, ЮАР)	210
8.3.2. Улутелякское месторождение марганца	
8.3.4. Месторождения рифовых фаций	
8.4. Железомарганцевые месторождения	304
8.4. железомарганцевые месторождения железисто-кремнистых формаций	388
железисто-кремнистых формации 8.5. Метаморфизованные месторождения марганца	
8.6. Месторождения кор выветривания	
Глава 9. Изотопные особенности образования марганцевых пород и ру	····· 404
плава э. изотопные осооенности образования марганцевых пород и ру	/Д404
ЧАСТЬ ЧЕТВЕРТАЯ. Главнейшие эпохи и фазы накопления марганца	ด
Эволюция марганцевого рудогенеза в истории Земли	
Глава 10. Главнейшие периоды и эпохи накопления марганца	
в истории Земли	416
10.1. Архейский металлогенический период (3500–2500 млн. лет)	
10.2. Протерозойский металлогенический период (2500–550 млн. лет).	
10.2.1. Ранне-среднепротерозойская эпоха (2500–1000 млн. лет)	421

10.2.2. Позднепротерозойская (неопротерозойская)	
эпоха (1000–550 млн. лет)	426
10.3. Фанерозойский металлогенический период (эон)	430
10.3.1. Ранне-среднепалеозойская эпоха (Cm-D)	
10.3.2. Позднепалеозойская эпоха (С-Р)	
10.4. Мезо-кайнозойская марганцеворудная эпоха (T-Pg)	
Глава 11. Эволюция марганцевого рудогенеза в истории Земли	441
Глава 12. Роль биосферы в рудогенезе марганца в геологической истории Земли	447
Заключение	453
Приложение. Методика подготовки проб к изотопному	
анализу углерода и кислорода	455
П.1. Способы разложения карбонатов до газообразной СО,	456
П.2. Подготовка проб карбонатов марганца к изотопному	
анализу разными методами и их сравнение	458
П.3. Подготовка проб Fe-Mn-оксидных стяжений	
11.5. Подготовка проо ге-мп-оксидных стяжении	
оз. Пуннус-Ярви к изотопному анализу углерода и кислорода	470

ПРЕДИСЛОВИЕ

Вопросам геохимии марганца, закономерн остям размещения марганцевых месторождений, составу марганцевых руд и условиям их образования посвящена обширная научная литература (более 5 тыс. наименований). Общеизвестны в этом отношении труды В.И. Вернадского, А.Е. Ферсмана, А.Г. Бетехтина, Н.С. Шатского, Н.М. Страхова, С. Роя. Существенный вклад в выяснение природы месторождений марганцевых руд внесли исследования И.М. Варенцова, К.Ф. Парка, Дж. Оствальда, Б. Болтона, Ф. Вебера, Н. Бюкса, Дж. Гутцмера, Г.С. Дзоценидзе, Д.Г. Сапожникова, Е.А. Соколовой, Л.Е. Штеренберга и многих других отечественных и зарубежных исследователей.

Несмотря на то что накоплен огромный фактический и научный потенциал знаний в области геологии марганца и вещественного состава марганцевых пород и руд, многие вопросы марганцевого рудогенеза до сих пор остаются выясненными не до конца. Это касается, прежде всего, генетических моделей формирования основных промышленных типов марганцевых руд, заключенных в таких месторождениях-гигантах и марганцеворудных бассейнах, как Калахари (ЮАР), группы олигоценовых месторождений Паратетиса (Украина, Грузия, Казахстан, Болгария), Северо-Уральского (Россия), Карпентария (о. Грут-Айленд, Земля Анхерм и др.; Австралия) и других.

Построение тех или иных моделей формирования месторождений любого рудного полезного ископаемого, в том числе и марганцевых руд, изначально предполагает наличие логически завершенной и фактически обоснованной концептуальной основы, включающей в себя решение таких важных вопросов, как источники рудного и нерудного вещества, условия образования (экзогенные: климат, палеогеография, тип палеоводоема, физико-химические условия и пр.; эндогенные: температура, рН, еН, давление и пр.), а также эволюцию процесса рудообразования во времени (для конкретного месторождения — в частности, в истории становления литосферы Земли — в целом). Разумеется, для разных промышленных типов руд они будут различными.

До сих пор остается открытым также вопрос об основных закономерностях эволюции процессов накопления марганца в породах литосферы на протяжении всей истории формирования Земли. Образование марганцевых пород и руд на протяжении геологической истории происходило неравномерно, и это зафиксировано в эпохах и периодах накопления марганца и обусловлено преобладанием тех или иных механизмов (моделей) марганцевого рудогенза.

В настоящей работе на основе обобщения имеющихся литературных данных и собственного фактического материала сделана полытка в генетическом аспекте кратко осветить некоторые особенности формирования как самих месторождений марганца, так и основные закономерности марганцевого рудогенеза в истории геологического развития пород литосферы.

Основными типами марганцевых руд разрабатываемых месторождений являются оксидные и карбонатные. Первые из них представляют наибольший практический интерес. Однако основные запасы марганца за исключением браунитовых лютитов месторождений марганцеворудного поля Калахари (ЮАР), заключены в основном в карбонатных породах. Поэтому их изучение несомненно представляет большое практическое значение.

Одним из наиболее информативных прецизионных методов в геологии являются изотопные исследования. Данные по изотопному составу углерода и кислорода в карбонатах марганца во многих случаях позволяют выявить основные закономерности их генезиса и уточнить многие аспекты формирования самих месторождений марганца. Установленные закономерности распределения изотопного состава являются полезными также и при поисках новых месторождений марганца.

Несмотря на то что сегодня детально изучены геология и вещественный состав многих известных и промышленно разрабатываемых месторождений марганца и накоплена колоссальная база изотопных данных, планомерные изотопные исследования в марганцевых рудах до сих пор практически не проводились. Именно этот «пробел» в научной литературе и пытается заполнить автор настоящей работе.

В монографии приведено обобщение изотопных данных для представительной коллекции природных карбонатов марганца, отобранных как из современных осадков озер, морей и океанов, так и непосредственно из известных месторождений марганца стран бывшего СССР (Россия, Украина, Грузия, Казахстан) и стран дальнего зарубежья (Австралия, ЮАР, Гана, Габон, Бразилия и др.). В работе детально охарактеризованы основные генетические типы марганцевых пород и руд и особенности их формирования. Полученные изотопные данные позволили уточнить генетическую классификацию месторождений марганца. Установлено, что мараганцеворудный процесс в осадочных толцах не заканчивается на стадии диагенеза, а интенсивно протекает также и позже — на стадии катагенеза (эпигенеза).

Выявленные особенности накопления марганца в стратисфере, обусловленные преобладанием тех или иных механизмов (моделей) марганцевого рудогенза, позволили выделить основные эпохи и периоды накопления марганца в истории развития Земли.

Выполнение изотопных исследований и написание настоящей монографии проводилось при участии и постоянной поддержке моих коллег. Обсуждение изотопных данных на протяжении длительного периода изучения месторождений марганца проходило при непосредственном участии моего учителя заведующего лабораторией геохимии изотопов и геохронологии ГИН РАН проф. В.И. Виноградова, которому автор бесконечно благодарен.

Особую благодарность автор выражает своему коллеге, д.г.-м.н. Б.Г. Покровскому, постоянно оказывавшему на протяжении всего периода научных исследований ценные консультации в области геохимии стабильных изотонов, а также проф. В.Н. Холодову, принимавшему участие в обсуждении полученных результатов.

Автор выражает глубокую признательность коллегам, специалистам в области геологии и геохимии месторождений марганцевых руд и марганценосных осадков, любезно предоставивших для изотопных исследований собственные коллекции: А.И. Брусницыну (СПбГУ), Е.В. Стариковой (СПбГУ), А.Г. Розанову (ИО РАН), В.Н. Свальнову (ИО РАН), Л.Е. Штеренбергу (ГИН РАН), Е.А. Соколовой (ГИН РАН) и Ж.В. Домбровской (ИГЕМ РАН): Автор благодарен А.Ф. Бычу, Ю.В. Миртову, С.М.

Мирговой (ЗапСибГУ, г. Новокузнецк) и Б.А. Горностаю (ПГО «Архангельскгеология», г. Нарьян-Мар) за большую помощь при отборе каменного материала во время проведения полевых работ.

Неоценимую помощь в понимании геологии месторождения-супергиганта марганцеворудного поля Калахари оказали профессора Йоханенсбургского университета (ЮАР) Н. Бюкс и-Дж. Гутцмер, которым автор выражает искреннюю признательность.

Автор благодарен также Е.В. Покровской (ГИН РАН) за постоянное содействие в выполнении рентгеновских анализов и помощь при интерпретации рентгенограмм, а также М.И.Степанец (ГИН РАН) за выполнение химических анализов.

Автор также выражает искреннюю признательность М.С. Бузуку и М.А. Белокрысу (Inpart Ltd., AfroAsiaMinerals Ltd.), предоставившим возможность посетить важнейшие месторождения марганца Африки, Австралии и Бразилии.

Работа выполнялась в атмосфере сердечной и дружеской поддержки сотрудников лаборатории геохимии изотонов и геохронологии Геологического института РАН: Сулержицкого Л.Д., Рябинина А.Л., Головина Д.И., Герцева Д.И., Буякайте М.И., Драгавцевой Т.И, Макаровой Н.И., Певзнер М.И., Зарецкой Н.Е. и др., которым автор также искренне благодарен.

И наконец, автор бессилен в выборе слов благодарности своему учителю в области геохимии месторождений марганца, бессменному научному рецензенту практически всех научных публикаций по геохимии изотолов месторождений марганца, главному ваучному сотруднику Геологического института РАН д.г.-м.н. И.М. Варенцову.

На заключительной стадии написания работы научные исследования проводились при финансовой поддержке гранта РФФИ № 11-05-00584-а и Программы Президиума РАН № 27.